
University of Amsterdam
Faculty of Science
The Netherlands

Dutch Nao Team

Technical Report 2024

Students:
Harold Ruiter
Gijs de Jong
Macha Meijer
Marina Orozco González
Mark Honkoop
Julia Blaauboer
Rick van der Veen
Fyor Klein Gunnewiek
Morris de Haan
Fiona Nagelhout
Joost Weerheim
Stephan Visser
Juell Sprott
John Yao

Supervisor:
Arnoud Visser

December 30, 2024

Contents

1 Introduction 4

2 Team Structure 4
2.1 Board . 4
2.2 Management . 5

2.2.1 Roadmap . 6
2.3 Tech teams . 6
2.4 Committees . 7

3 Framework 7
3.1 Moving over to Bevy . 8
3.2 Hardware abstraction . 9
3.3 Deployment . 10
3.4 Visualization . 11
3.5 Networking . 12

3.5.1 Deadlines . 12
3.5.2 Encoding . 14

3.6 Kinematics . 14

4 Sensing 16
4.1 Orientation filter . 16
4.2 Whistle detection . 17

5 Vision 20
5.1 Projection . 20
5.2 Camera calibration . 21

5.2.1 Intrinsics . 21
5.2.2 Extrinsics . 21

5.3 Color calibration . 22
5.4 Scan lines . 24

5.4.1 Scan grid . 24
5.4.2 Scan line regions . 24
5.4.3 Color classification . 24

5.5 Line detection . 25
5.6 Field boundary detection . 26
5.7 Ball detection . 27

5.7.1 Proposals . 27
5.7.2 Classification . 29

5.8 Robot detection . 31

1

6 Motion 32
6.1 Walking engine . 32
6.2 3D reinforcement learning . 33

6.2.1 Gait Modulation . 33
6.3 Keyframe Motion Engine . 34

6.3.1 Composition . 34
6.3.2 Execution . 35

7 Behavior 36
7.1 Behavior Engine . 38
7.2 Behavior Simulation . 38
7.3 Reinforcement learning behavior . 38

8 Machine Learning Integration 39
8.1 ML in framework . 39

8.1.1 Backend . 40
8.1.2 Interface . 41

8.2 DNT-ML . 42
8.2.1 Training pipeline . 42
8.2.2 Modules . 43

9 Workshops and events 43
9.1 List of activities . 44

9.1.1 Sponsor Event RoboCup . 44
9.1.2 Visit of Metis College - February 44
9.1.3 School Visit - March . 45
9.1.4 Career Day - March . 45
9.1.5 Girls Day - April . 45
9.1.6 School Visit Belgium - May 45
9.1.7 24 uur Oost - September . 45
9.1.8 Weekend of Science - October 45
9.1.9 UvA Open Campus Day - November 46
9.1.10 Visit of French Students - November 46
9.1.11 Startup Village Visits - throughout the year 46

9.2 SPL events . 46
9.2.1 German Open . 47
9.2.2 RoboCup . 47
9.2.3 RoHOW . 47

10 Plans for 2025 47
10.1 Software . 48

2

10.2 AI . 48
10.3 Management, board and committees 49
10.4 Committees . 49

11 Contributions 49

12 Conclusion 50

3

1 Introduction

The Dutch Nao Team (DNT) is a RoboCup team founded in 2010 [1], that com-
petes in the Standard Platform League (SPL). The team was formed after the
move from AIBO to NAO robots in the SPL starting from 2008 onwards. Before
its founding, the team had been active as the Dutch AIBO Team since 2003 [2].

This document serves as an overview to the changes made this year within the
Dutch Nao Team, on an organizational and technical level. Chapter 2 discusses
the team structure and our approach to working as a student team. Chapters 3
through 8 focus on the Dutch Nao Team software. Chapter 9 lists the activities
we organized and participated in this last year. Chapter 10 highlights our planned
goals for the coming year. Chapter 11 lists the contributions of all team members
that contributed to this report. Finally, Chapter 12 concludes the report with a
small summary.

2 Team Structure

To make active progress as a team, it is required to have people involved in technical
and organizational tasks. In this section, we will describe the different layers of
the team structure and the updates that have been implemented with respect to
previous years [3] [4] [5].

This year, a completely new organizational structure that aims to achieve a more
clearly divided and transparent organization of the team was introduced. A scheme
of this structure can be found in Figure 1 and a description of each role can be
found in the following subsections.

2.1 Board

The board is the legal entity behind the Dutch Nao Team. The board is part of the
Dutch Nao Team Foundation. The board is primarily tasked with the monetary
and administrative duties related to the team. The treasurer is responsible for
creating an overview of the yearly budget and handling all money related issues.
The secretary is responsible for communication within the team and with external
parties. The president is more of a generalist helping out where needed and leads
the board meetings. The president is also responsible for the legality of the actions
of the board. This year, Lasse van Iterson acted as president of the board. Dário
Xavier Catarrinho acted as Secretary of the board until April, and took on the
role of vice-chair from April on. Joost Weerheim took over the role of secretary.
Until April, Derck Prinzhorn was vice-chair of the board and Jurgen de Heus was

4

Figure 1: Overview of the new team structure.

the treasurer of the board. From April on, Stephan Visser took on the role as
treasurer.

2.2 Management

From a high-level perspective, the management team is in charge of setting the
goals the team plans to achieve within the year, drawing a roadmap to achieve it,
checking each member’s contribution and making sure that the team’s activities,
recruiting of new members, and future existence are secured. The management
does weekly meetings discussing these tasks and other important topics that might
arise.

As all team members are putting in time on a voluntary basis and the number of
members has grown significantly in the last years, we found that having only a
team lead managing most of these tasks was an excessively large task. We therefore
decided to delegate these responsibilities to multiple people.

Within management, we have four different roles: the team leader, the opera-
tions leader, and two technical leaders for each of the technical subteams: AI and
software.

The team leader is still the main point of contact in many situations and should
be knowledgeable about everything that is going on in the team. The task of
the team leader is to provide the team with the general strategic vision for the
year and to ensure that the roadmap items are being achieved. They also do the

5

recruitment interviews together with the tech team leader that is most aligned
with a potential new member’s interest. In the year 2023-2024, Jakob Kaiser and
Ross Geurts acted as team leaders. From September, Harold Ruiter took over the
role of team leader.

The operations leader is a new role that focuses on operational and administrative
duties. They make sure we are signed up for events on time and that accom-
modation and insurance are handled. Apart from that, their task is to check on
the committees so that they are functioning properly. The role of operations lead
was introduced in September. From September onwards, Marina Orozco Gonzáles
acted as operations lead.

The technical team leads are the people with in-depth knowledge on either the soft-
ware or artificial intelligence (AI) domain. They handle their respective weekly
tech team meetings and support people if they need help with more specific ques-
tions. Together with the team lead, they develop the yearly roadmap. This year,
Gijs de Jong acted as software lead and Macha Meijer acted as AI lead.

While each of these roles has their specific main tasks, the weekly management
meetings ensure that they are all updated on each other’s progress. This solves
the problem of the work being too much for any single person to handle and also
allows the management members to check in and help out if the need arises.

2.2.1 Roadmap

The yearly roadmap is scheduled in 3 big sprints, towards the Robotics Open Ham-
burg Workshop (RoHOW), RoboCup German Open and RoboCup respectively.
After each of these events, the roadmap is evaluated by the management team on
progress and adjusted accordingly. In order to avoid slowing down development in
between events, additional practice matches are scheduled in between, acting as
soft sprint goals.

2.3 Tech teams

Technical development in the team takes place in roughly two areas: software
development and AI projects. Therefore, for the technical development, there
are two subteams. Everyone in the team is part of either the software or the AI
team. In the subteams, everyone is assigned one or multiple projects to work on.
The projects are determined by both the interest of the team member and the
roadmap which is defined by the management. To collaborate, help each other,
and brainstorm, both subteams participate in weekly meetings. In these meetings,
progress and potential issues regarding everyone’s project are discussed, as well as

6

ways to continue the projects. The technical teams are led by the technical leads,
who are also the direct point of contact of the subteam members. Collaboration
between subteams, which is needed when, for example, AI projects need to be
incorporated in the framework, goes through the subteam leads.

2.4 Committees

Like any other organization, the Dutch Nao Team requires external exposure and
resources to fund its different outlays of the team. To address this, the team was
organized into three different committees: Workshops and Events, Social Media,
and Partnerships. However, due to the limited number of team members, the Social
Media and Partnerships committees are combined under the Outreach committee.
This year, Fiona Nagelhout acted as committee lead for Workshops and Events,
and Gijs de Jong acted as committee lead for Outreach.

The partnerships committee is in charge of finding, approaching and sustaining
contact with sponsors that could finance the team. This includes designing pro-
posals templates for potential sponsors, developing outreach strategies, managing
the mail contact of the team, and ensuring the terms of sponsorship agreements
are adhered to and fulfilled.

The other committees are closely connected to the Partnerships committee, as our
primary offerings to sponsors involve event organization and social media exposure.
In collaboration with the Partnerships committee, the Workshops and Events com-
mittee not only organizes sponsor-related events, but also prepares presentations,
workshops, and activities tailored for educational institutions and visitors, ranging
from primary school students to members of the university community.

The Social Media committee ensures the creation of audiovisual content showcasing
the team and its progress, keeping our social media active and the website up-to-
date. This requires maintaining an appealing and cohesive feed that effectively
captures the essence of our team for external audiences. Currently, we are on
Instagram, LinkedIn and Youtube, and our goal is to post at least once per month,
covering all competitions and trips we attend.

3 Framework

This section describes our framework yggdrasil, and the tooling surrounding it.
Since 2022, we have been developing our robotics code in the Rust programming
language. We started off building on the HULKs framework [6], but in 2023 we
started creating our own framework from scratch, in order to deepen the under-

7

standing of the NAO within the team and improve on what we believe to be a
shortcoming of the currently available frameworks. Concretely, we put a heavy
emphasis on creating a fully parallelizable design that future proofs the team for
future iterations of the NAO, as it is likely have more processing power and physi-
cal cores available. A current trend within the SPL is to have each system running
at a different frequency assigned to a dedicated thread. With yggdrasil, systems
are (unless specified) independent of threads and instead executed in parallel as
tasks on the application’s different thread pools. This gives us two major benefits:

• Because systems are no longer tied to specific threads, we can simply schedule
more tasks on threads that are not executing anything, allowing for more
complete utilization of the full processing power of the NAO.

• When a new model of the NAO with more available cores/threads releases,
we can simply scale up the size of the thread pool to fully utilize the extra
processing power.

3.1 Moving over to Bevy

Last year, we developed our own dependency injection and task scheduling library
called Tyr. The internal design and outwards-facing API of Tyr were heavily
inspired by the design of the Bevy game engine [7]. It might not seem obvious
at first, but the requirements of creating video games are very similar to those of
robot programming. Firstly, there is the need for high performance. Both games
and the NAO are soft real-time systems, in the sense that a game always should to
render to the screen within a certain time (usually around 30 or 60 Hz), and the
NAO should read the sensor state and send a control message to the LoLA socket
(82 Hz). This means that the underlying framework should allow us to easily write
high performance code when needed. Secondly, it is important that many different
interacting systems work together, but are still modularized such that they can
be effortlessly inspected, modified, or even disabled without breaking the whole
application. In the context of the Dutch Nao Team, this quality is especially good
to have, as it allows us to more easily compare old versus new versions of modules
and therefore iterate on code faster.

This year, we dropped Tyr entirely in favor of using Bevy. The reasoning is as
follows:

• We found that there were a lot of features and capabilities getting added to
Bevy, many of which we had to manually port over, costing us development
time in a relatively complex part of the codebase. Now, we can enjoy new
features with every Bevy release cycle, which is almost every three months.

8

• The Bevy ecosystem is large and rapidly growing, which means there are
several open-source plugins and libraries built by other people we can use.

• While we initially chose to build our own library in order to have more control
over our API surface and dependencies, we found ourselves converging more
and more to the ones provided by Bevy. We found that we could get a
sufficiently lean environment by disabling a lot of Bevy components like the
renderer and asset capabilities.

• We now gain a fully-featured Entity Component System (ECS). The ECS
model is an example of data-oriented design and strongly encourages clean,
decoupled systems by forcing the programmer to break up app data and logic
into its core components, making parallelism easier. It also helps to make
your code faster by optimizing memory access patterns as it internally uses
a Structure of Arrays to store data. While Tyr already introduced the ECS
concept of systems, internally data was stored as singletons and it did not
feature the entity/component part of ECS.

Since the design of Tyr was already heavily based on Bevy, a lot of the code was
effortlessly ported over (see Figure 2.). Much of the remaining work is left in
converting the existing modules to be more idiomatic, using the full capabilities
of the ECS model.
// Simple example in Tyr
#[system]
fn count(counter: &mut Counter) -> Result<()> {

println!("{counter:?}");
*counter += 1;
Ok(())

}

fn main() {
App::new()

.init_resource::<Counter>()?

.add_system(count)

.run()
}

// Simple example in Bevy
fn count(mut counter: ResMut<Counter>) {

println!("{counter:?}");
*counter += 1;

}

fn main() {
App::new()

.add_plugins(MinimalPlugins)

.init_resource::<Counter>()?

.add_systems(Update, count)

.run()
}

Figure 2: A simple example that prints and increments a counter in both Tyr and
Bevy.

3.2 Hardware abstraction

Last year, we developed nidhogg, a layer built on top of LoLA. As nidhogg is an
abstraction layer over LoLA, the library has full control over the data structures
used for storing robot data. Therefore, the data structures in nidhogg are designed
to be intuitive to use and change, making it simpler for developers to create and
refine robot behaviors without unnecessary hurdles.

9

Another benefit of building nidhogg as an abstraction layer for LoLA is that it
allows the usage of different back-ends for nidhogg. This makes it possible for
yggdrasil to run on different platforms, including simulation environments. The
ability to run yggdrasil in simulations is significant as it makes the application
of various machine learning techniques possible, while also providing a safe envi-
ronment to run tests without risking real hardware.

yggdrasil

nidhogg

Bullet Isaac Lab LoLA Genesis MuJoCo

Figure 3: The nidhogg abstraction layer can have multiple backends which are
transparent to the user.

This year, we started work on expanding the scope of nidhogg, so that it can
be used as not just a layer wrapping LoLA, but more of the entire hardware
environment. This change is made in order to run larger parts of the framework
in a local environment (see subsection 3.3 for more info on the local feature).

3.3 Deployment

sindri is a development tool designed to enhance the efficiency of the development
process. It is engineered to enable us to perform critical tasks using just a single
command. For instance, deploying and running the yggdrasil binary, along with
uploading any requisite assets directly to the designated robot can be achieved
simply through the command sindri run <robot_id>. It is also equipped with
a network scanning capability (sindri scan), to identify online robots within an
IPv4 address range and many other useful utilities.

One of the main additions to sindri this year was the local feature, allowing us to
simulate the framework on local hardware instead of having to use a real NAO. As
of now, this does not make use of the changes in nidhogg and is mostly used for

10

testing changes in the vision algorithms, but we plan to introduce more feedback
by integrating a 3D simulation of the real-world environment.

As this is the first year we started playing in the SPL using our own framework,
we additionally wrote functionality for many-robot deployment and network con-
figuration through the sindri showtime command.

3.4 Visualization

To streamline development and make debugging issues easier, we heavily rely on
Rerun [8] for real-time monitoring of the robot’s vision and control.

Rerun is a versatile tool for visualizing multi-modal data over time, making it
perfect for debugging our robotics code. For example, it helped us find signif-
icant issues with our ball proposal algorithm. Using its SDK, we log real-time
data streams - including images, line segments, bounding boxes, and joint trans-
forms — and send them over TCP to a Rerun viewer on the developer’s machine.
Additionally, recordings can be written directly to an external flash drive, which
we utilize during matches. We review these recordings post-match for in-depth
analysis, aiding in performance improvements for subsequent games. These match
recordings are also used to collect more data for our datasets using the Dataframe
API1.

Figure 4: Rerun visualization of the yggdrasil framework

We implemented additional tooling surrounding Rerun to improve our workflow.
For example, we implemented a control panel to selectively enable and disable
data streams to save bandwidth where possible.

1https://rerun.io/docs/howto/get-data-out

11

https://rerun.io/docs/howto/get-data-out

3.5 Networking

In the last year, we developed the framework for our robot-to-robot communication
during a match. As the networking environment is not part of our responsibility,
we did not need to consider issues such as latency and packet drop. Instead,
we assume that such conditions are perfect (negligible latency, no packet drops),
which allows for a simplified design. One of the core design goals was to provide
an ergonomic API that abstracts away the constraints laid out by the SPL rules.
Not only does this aid modularity by keeping the networking logic close together,
but it allows multiple producers and consumers that are unaware of each other to
efficiently work together.

The constraints placed upon our networking can be summarized as three separate,
but intertwined aspects:

1. There is a team-wide message budget over the entire game, amounting to
1200 packets or 1 per second on average. Messages only count towards this
limit during the ready, set, and playing states.

2. There is a maximum packet size of 128 bytes, but messages are allowed to
be shorter (which means we do not need to pad out messages and encode
the payload length inside the message).

3. All messages must be passed via UDP broadcast over a single port assigned
to the team. This allows the game controller to keep track of the message
budget, which they in turn expose in the data packets it sends to the robots
during gameplay.

These limitations require us to cleverly utilize the bandwidth available to us to
share the most important information to improve our gameplay. There is definitely
more information we would like to communicate than is possible, so we must
prioritize some messages over others. Because the budget is expressed both in
size and number, we could potentially waste a significant amount of our potential
bandwidth if we do not fully utilize this space. At the same time, information can
quickly become outdated, which means that keeping it around in a buffer waiting
to be filled up might end up wasting it after all.

3.5.1 Deadlines

To satisfy these requirements, our networking stack consists of an inbound and
outbound buffer that packs/unpacks multiple messages into/from a single packet.
Crucially, the outbound buffer not only keeps track of the content of the messages,
but is also supplied with a deadline for when the message is to be sent out. This
deadline can be expressed through the API relative to the current time or at an

12

absolute moment in time. This way, producers can flag messages as needed to be
sent out within a specific time frame in a single API call, and the networking stack
uses this information to make the final decision on when the packet is actually sent
out. Additionally, we expose a method for updating an existing message inside
the buffer if it is still around, so messages with longer deadlines do not necessarily
become stale. This is useful for information that is of lower priority but still
benefits from being as up-to-date as possible by the time it is sent out. When the
buffer is full enough, it packs as much of these messages in a single packet and
then sends it out. The messages are packed ordered by their deadline, although
smaller messages take precedence over larger ones if the larger one no longer fits
in the remaining space.

We recognize, however, that a significant portion of our framework does not need
such specific control over when a message is sent out. Instead, the general re-
quirement is to send out as much as possible so that we have a near-zero budget
remaining at the end of the game. This is why messages, unless specified other-
wise, are given an automatic deadline that is calculated to be a sustainable rate at
which to send them out. This deadline is not necessarily constant, but can vary
over the game as long as it ultimately ends at the same number of packets sent
over the entire game.

Going into more detail about when packets are exactly sent out, there are four
variables relevant to this decision:

1. The late threshold, which controls the minimal interval between packets
even if any of the pending messages have reached their deadline.

2. The early threshold, which controls the minimal interval between packets
when none of the messages have yet reached their deadline.

3. The automatic deadline, which controls the deadline messages default to
when not specified otherwise, and should typically be between the early and
late thresholds.

4. The allowed dead space, which controls how much we are allowed to un-
derfill the packet if we send it out early.

This design allows for global control of the rate at which messages are sent out,
but has the tolerance to adaptively send messages slightly faster or slower. The
late deadline is necessary to prevent messages that set their own deadline to use
up to much of the bandwidth too early into the game The early deadline is not as
necessary to keep the networking functional, but does ensure packets don’t linger in
the buffer when we are underutilizing our bandwidth. This incentivizes producers
of low-priority messages to set a higher deadline so it gets sent out at a time when

13

higher-priority messages don’t need to.

3.5.2 Encoding

Because we pack multiple messages into a single packet, we need to reconstruct
the message boundaries, as well as the types. As there is a maximal rather than a
required packet size, we can reconstruct the total number of messages by scanning
the lengths of the individual ones. In order to be more space-efficient, we require
that the length of the message can be determined by the decoder itself without
an external length tag. This is done because most of the messages that we want
to communicate do not contain any variably sized fields. As we cannot know
what messages the buffer contains beforehand, we are need to prefix an enum
tag that identifies what type of message this is. Because we have a centralized
project, we use Rust enums and procedural macros to implement the encoding
and decoding of these tags and the messages themselves. This ensures a unique
tag for every possible message format without any conflicts at compile-time, at the
cost of requiring every module that wishes to add a new message format to add it
to one central enum definition rather than to their own separate modules. Also,
as we control the deployment as well, we do not need any protocol negotiation or
versioning to be implemented, as we ensure all robots run the same code.

Although we have a significant bandwidth constraint, the networking layer does
not implement any transparent compression of messages when they are packed
into a packet. The reason for this is two-fold, first of all we expect the sent
over data to be of reasonably high entropy, and we require the message producers
to be conscious of the amount of space their message takes up when encoded.
Secondly, for data that could benefit from being compressed, we expect that in
these cases a compression scheme specialized towards that specific message to be
more space-efficient than a compression scheme generalized over all message types,
even if that means compression will have to be done on the message-level rather
than on the packet-level. To do this, producers can swap out the automatically
derived encoding function for their custom implementation, keeping the framework
modular.

3.6 Kinematics

By leveraging Rust’s type safety, we have refactored our handling of spatial coordi-
nates to keep track of the coordinate frame in which geometric objects are defined
at compile-time. Not only does this enchance code readability and clear up ambi-
guity in naming, but it also exposes this semantic information to the compiler in a
way that it can be introspected and transformed syntactically to provide powerful

14

abstractions. At the core, it tracks what space an object belongs to by wrapping
it together with a zero-sized PhantomData<S> field. The generic parameter type S
only serves as a marker and is never actually constructed, but only used to interact
with the type system. This wrapper is expressed as InSpace<T, S> in our frame-
work, with convenience type aliases for commonly used types such as Vector3<S>
or Point2<S>. To provide further validation, we mark the space type with some
trait bounds used as marker traits. These trait bounds are Space, which marks
the type as a space marker, and SpaceOver<T>, which marks the type as express-
ible in that space. We use this latter bound to ensure that an n-D type cannot
be marked with an m-D space (where n ̸= m) at the cost of slightly longer trait
bounds in function definitions generic over spaces. Additionally, we have another
wrapper type BetweenSpaces<T, S1, S2> that marks a transform as mapping
between these two spaces (with type aliases such as Isometry3<S1, S2>).

Figure 5: Joints and actuators of the NAO robot

The benefits of this approach are mostly reaped by code that interfaces with our
kinematics implementation. Previously, our forward kinematics struct contained
an isometry from every joint to a single point on the robot referred to as “robot
space”. These transforms were pre-processed when constructing the kinematics
chain from an array of joint positions. Because all isometries transformed into the
same space, transforming to and from every other space was achieved through a
relatively simple chain of a transformation followed by an inverse transformation.
However, this design stored every isometry in a separate field, without a way for
the compiler to introspect what field maps from which space into which other
space. This prevented us from using Rust’s generic features to avoid code repeti-
tion. Although we could have stored all the isometries into a single homogeneous
array indexed by an enum, which would have had a negligible cost at run-time and
compile-time, we opted for the more expressive system described above. With this
design, every field has a different type (even though the wrappers are ultimately
transparent and do not affect the memory layout, which allows for the casting of

15

references to and from the inner type). Adding an elementary trait implementation
for accessing every concrete space then allows us to build more generic abstrac-
tions on top. Because of Rust’s limitations on trait bounds, most notably the lack
of negative trait bounds and specialization, creating a generic function to trans-
form every possible type to and from every possible space necessitated a couple of
convoluted workarounds.

Ultimately, we settled on using procedural macros to generate the implementation
of a Transform trait, which is implemented manually for transformation primitives
such as matrices and isometries, but automatically for bundles of transformations.
It does this by inferring what spaces a field maps between based on the last two
generic parameters of its type. As the procedural macro lacks access to a lot of
context, there is no way to access this type of information directly. Unfortunately,
as a consequence, we cannot create nested bundles or type names without the use
of additional attribute annotations. Using the available information, it generates
a concrete implementation of a transformation to and from every space, generic
over the inner geometric object. To accomplish this, it builds a graph and uses
it to find the shortest path of transformations between any two spaces. The only
constraint is that the input and output type must match at each point along
the way, as, otherwise, there could be multiple paths which would then require
a concrete implementation for every inner type as well. This results in a lot of
code generation, but the simplicity of the generated code does not require much
additional work on the part of the compiler. Ultimately, our setup provides a
sufficient basis for building complex abstractions without the need for excessive
additional code duplication. Practically, it allows us to transform individual points
or vectors along a chain. However, by passing a type that implements Transform
itself through the chain, we end up with a direct transform.

4 Sensing

Apart from the cameras, the NAO has several sensors. In our framework, the
output of the inertial measurement unit (IMU) and the microphone are very im-
portant. In this chapter, we explain how we use the IMU in our orientation filter,
and how we use the audio input to do whistle detection.

4.1 Orientation filter

To keep track of its orientation, the NAO is equipped with an inertial measurement
unit (IMU) with a gyroscope and accelerometer. The readings from these sensors
are provided by LoLA, alongside an angles property which contains the estimated

16

roll and pitch of the robot.

This leaves us without the very important yaw of the robot. Moreover, the roll
and pitch values are noisy and lag behind a few frames at best. Additionally, LoLA
alternates updating the values for the gyroscope and accelerometer respectively [9].
This means that instead of the usual 12 millisecond delay between measurements,
there is a 24 millisecond delay.

To obtain a consistent and trustworthy estimate of the robot’s orientation, we
perform sensor fusion of the gyroscope and accelerometer measurements using the
Versatile Quaternion-based Filter (VQF) [10]. Unlike traditional techniques like
Madgwick [11] or VAC [12], VQF represents the current orientation estimate as a
concatenation of multiple quaternions. This enables it to estimate separate biases
and uncertainties for each component, making it more robust over time.

The algorithm begins with strapdown integration, which uses the angular velocity
measurements from the gyroscope to calculate the change in orientation over time.
By itself, this technique will lead to drift over time due to small biases in the gy-
roscope measurements. To address this, the VQF estimates the gyroscope bias by
comparing the estimated gravity vector derived from accelerometer measurements
with the one inferred from the integrated orientation. Any difference is assumed
to be caused by gyroscope bias, which the algorithm then corrects for.

The authors provide a Python and C++ implementation2 of the VQF. However,
since no Rust implementation is available, we implement a pure Rust version and
make it publicly available here: https://github.com/oxkitsune/vqf.

4.2 Whistle detection

Another key area that has seen [13] significant improvement during the past year
was automated whistle detection. Whistle detection is the task of recognizing when
the referee blows their whistle, which is important to correctly judge the current
game situation. Failing this task can have counterproductive consequences, hence
it is paramount to deploy an accurate whistle detection method.

The development consisted of two steps. Firstly, programming a function for
converting a raw waveform (i.e., an energy-time graph) recording from the NAO
microphone to a spectrogram (i.e., an energy-frequency graph). The reason is that
for this task, spectrograms are a highly useful audio representation, as frequency
information is necessary for distinguishing a whistle from a non-whistle sound
with identical energy levels. Secondly, developing a whistle detection model that
classifies a spectrogram with a binary label, where 0 denotes that no whistle was

2https://github.com/dlaidig/vqf

17

https://github.com/oxkitsune/vqf
https://github.com/dlaidig/vqf

Figure 6: A spectrogram constructed from an audio segment of a part of a
RoboCup match with corresponding output of the whistle detection model.

detected and 1 that a whistle was detected. See Figure 6 for an example of a
spectrogram along with the output of the final detection model.

The first step, converting a raw waveform to a spectrogram, is typically done using
the Fourier transform (FT) [14]. However, a spectrogram does not account for fre-
quencies changing over time, even though our goal is to classify at which moments
in time a whistle sound is present and at which ones not for an audio sequence.
Hence, we need an adapted version of the FT: the short time Fourier transform
(STFT) [15], which returns an array of spectrograms by repeatedly computing the
FT for a sliding window over time. Because at the time of development no suit-
able Rust implementation of the STFT was available, we implemented it ourselves
using the FT provided by the RustFFT3 crate.

For the second step, developing the whistle detection method, we compared two
different methods:

3https://github.com/ejmahler/RustFFT

18

https://github.com/ejmahler/RustFFT

• An algorithmic approach described by a member of the HULKs team4, which
serves as a baseline. As its precise inner workings have been expanded upon
before by the HULKs team, we shall only give a brief overview. Principally,
their method takes an audio spectrogram and searches the high frequencies
between 2kHz and 4kHz for high energy zones using a handcrafted algo-
rithm. If the mean energy in such a zone exceeds a predefined threshold,
the method classifies a whistle. The reason for only searching high frequency
bandwidths is that whistles typically are high pitched, which means search-
ing low bandwidths is futile and could even be harmful for classification.
To improve accuracy, their method also localizes the place of origin of the
sound using multiple NAO robots, but that aspect was not considered in our
implementation.

• A machine learning approach leveraging a feedforward neural network (FNN).
Analog to the previous method, this method only considers the high 2kHz to
4kHz bandwidth. However, instead of using a handcrafted detection mech-
anism, we train a FNN to classify whistles. The previous iteration of our
whistle detection model trained on the entire frequency spectrum, but we
found it was overfitting on lower frequencies to such a degree it became
nearly unusable. For training, we used the dataset provided by [16].

Another key factor we changed with respect to our previous iteration is that
we use our Rust implementation of the SFTF in both the framework and
to preprocess the training data. Previously, we used the Pytorch implemen-
tation in the training code and modeled our Rust implementation after the
Pytorch version. However, the implementations were not precisely equal,
which adversely affected training.

Model Accuracy
Algorithmic baseline 0.93
FNN 0.99

Table 1: Whistle detection accuracy results

After evaluating the models on the test dataset, we find that the FNN approach
achieves a near perfect accuracy and substantially outperforms the algorithmic
baseline (see Table 1). Lastly, we performed a practical test by simulating an
exceedingly noisy match environment and sporadically blowing a whistle during
the course of roughly 15 minutes. We found that the model was able to correctly
identify all whistles.

4https://github.com/ykonda/Masterthesis

19

https://github.com/ykonda/Masterthesis

5 Vision

A large part of the information about its surroundings the robot receives is through
its two cameras. Last year, we worked on various projects surrounding vision to
extract and use the camera information. In this chapter we will explain more
about projects on projection, calibration, line detection, field boundary detection
and object detection we did.

5.1 Projection

In order to build a 3D understanding of world using the monocular vision of the
NAO, we need to go from coordinates in 2D on the image plane to coordinates in
the 3D world.

The NAO has two cameras, one of which faces towards the ground (see Figure 7).
This renders it impossible to use stereo vision to estimate the depth of a 2D
position in the image. Instead, we use an intersection with a known plane: The
ground plane which is always at z = 0. This lets us project all pixels we have to a
position on the ground. We found the resulting positions to be reasonably good.

Figure 7: The positions of the two cameras in the NAO’s head [17].

To project a point to the ground, we first normalize the pixel coordinates using
the intrinsic matrix K:

xc

yc
1

 = K−1 ·

uv
1


This gives us the ray direction in the camera coordinate system. We then find the

20

intersection of this ray with the ground plane given the extrinsic matrix, by first
transforming the ray to world space:

dworld = R ·

xc

yc
1


In this equation Zc is the depth value of the ray

5.2 Camera calibration

Accurate projection from the camera’s view onto the ground plane requires both
intrinsic and extrinsic camera parameters.

5.2.1 Intrinsics

The intrinsic parameters describe the internal properties of the camera, and how
it maps 3D world points onto the 2D image plane. The intrinsic matrix in the
pinhole camera model consists of:

• Focal lengths (fx, fy), which represent the scaling factors for the x- and
y-axis of the image.

• Principal point (cx, cy), the coordinates of the image center (typically the
optical center) in the image plane.

• Skew (s), represents the non-orthogonality between the x- and y-pixel axes.
For most modern cameras this is close to 0.

We calibrate the focal lengths and the optical center, using the technique described
in [18], which uses images of a known checkerboard pattern to estimate the intrinsic
parameters of the camera. The skew parameter is ignored, as we found it does not
noticeably impact the projection.

5.2.2 Extrinsics

Extrinsic parameters define the position and orientation of the camera’s coordinate
frame relative to another coordinate frame. These parameters form a rigid-body
transformation, represented by a 3× 3 rotation matrix R and a 3× 1 translation
vector T .

To transform points from the camera’s coordinate space to the world space, the
extrinsic matrix is updated continuously based on the robot’s kinematics and ori-

21

entation (subsection 4.1). Since the robot’s kinematic chain is defined only up
to the neck, points in the camera’s coordinate space are first transformed to the
neck’s coordinate frame. Although this transformation is generally constant, slight
variations between individual robots make calibration necessary. Specifically, we
calibrate the roll, pitch and yaw values of the extrinsic rotation matrix. The trans-
lation is assumed to be constant, small physical shifts in the camera’s position over
time are considered negligible compared to errors introduced by the IMU’s slow
update rate (subsection 4.1).

This calibration is done after the intrinsics are calibrated. We first place the NAO
in the center of the field, facing towards one of the goals to ensure a controlled and
repeatable environment. Then we use iteratively adjust the roll, pitch and yaw
values until the projection lines up with known real world points.

5.3 Color calibration

Most of our crucial object detectors, such as ball or line detection subsection 5.5
assume correctly classified colors in order to work well. As our current color
detection system works using thresholding, it is important that the color samples
we get are therefore similar between robots.

However, varying lighting conditions significantly affect the perceived values of
green, black, and white, leading to frequent misclassifications in scan lines and
thereby compromising performance. These challenges arise not only when transi-
tioning to different playing fields, but also within the same field as the position of
the sun changes. In Figure 8, we can appreciate how different our understanding
of colors can be.

Figure 8: Three scenarios for color calibration under varying lighting conditions.
From left to right: (1) Homogeneous lighting with consistent color values, (2)
High variance in color values due to uneven lighting, and (3) A challenging case
where colors (green, black, and white) have similar pixel values, making detection
difficult.

22

In order to mitigate this problem, we introduce a color calibration function de-
signed to adjust thresholds based on changing lighting conditions. This function
is intended to be run whenever lighting changes occur, ideally before each match,
to ensure the use of accurate thresholds.

The calibration process begins by capturing pictures from different positions and
perspectives of the field to be as generalizable as possible. The images should
include the white and black cardboard sheets, as illustrated in Figure 8. Markers
provide large and reliable reference areas for known colors.

After that, we leverage an interface to manually select quadrangles in the images
that correspond to green, black, or white areas. For black and white, the quadran-
gles are selected from the cardboards, while for green, a representative area within
the field is chosen.

Once these regions are defined, the function converts the images to the YHS color
space and generates histograms showing the distributions of the YHS values for
each selected color region, as shown in Figure 9.

Figure 9: Example of the histogram analysis for choosing the YHS thresholds.
Each plot gives the distribution/bounds for a different threshold value.

23

Visual analysis of these histograms is preferred over automatic calculations using
statistical measures such as mean and standard deviation. We have this preference
because the distributions are highly asymmetric and prone to outliers. In addition,
experience-based insights can guide manual adjustments to enhance performance
beyond what purely statistical methods can achieve.

5.4 Scan lines

Scan lines serve as an optimization step to build a representation of the image in
which we can quickly find points of interest such as balls and lines. The scan lines
reduce the number of columns and rows that are looked at by subsampling them
in a way that still preserves most of the salient features.

5.4.1 Scan grid

In order to define the sampling frequency of our scan lines, we take a similar
approach to B-Human, creating a scan grid that uses the camera parameters and
horizon point in order to determine the width of field lines at each point in the
image. From there, we can calculate the intervals between horizontal lines we need
to sample in order to be able to theoretically detect all the lines in the image. For
vertical scan lines, we use a static interval.

5.4.2 Scan line regions

As we loop over the samples provided by the scan grid, we split each scan line
into scan line regions. A scan line region represents a part of a scan line in which
adjacent samples that have the same color.

For each row/column in the horizontal/vertical case respectively, we compare the
luminance with the average luminance of all pixels in the line segment before (if
there is one). As long as the difference is below a certain threshold, we append the
pixels to the line segment. However, if the difference is above that threshold, we
split the previous line segment, where the luminance difference between adjacent
pixels in the line segment is the largest.

5.4.3 Color classification

Once we have our scan line regions, approximate colors are first converted to the
YHS2 color space [19]. Finally, they are thresholded using a set of predetermined
parameters. If two scan line regions are classified to be the same color, they are
merged.

An example of the detected scan lines can be seen in Figure 10.

24

(a) The horizontal scan lines (b) The vertical scan lines

(c) The horizontal and vertical scan
lines combined (d) The original image

Figure 10: Examples of horizontal and vertical scan lines

5.5 Line detection

For line detection, we consider the center of each white scan region as a sample
called a line spot. We take the set of vertical and horizontal line spots and project
them to the field. We then perform several iterations of RANSAC to fit lines
between these points, which will serve as field line candidates. If adjacent line
spots within a fitted line are too far apart, we split the line candidate into two.

A common occurrence is that multiple candidates lie on the same actual field line,
so once we have all the line candidates, we perform an additional candidate merging
step similar to the approach used by B-Human [19]. That is, if the candidates are
part of the same line, the following assumptions should hold:

1. The points on the line segment connecting two candidates should be colored
white.

2. Points one line thickness away in the directions along the normal of the line
segment (i.e., points slightly outside of the candidate line) should be colored
green.

Using these assumptions, the merging step works by taking all candidates that are
close in angle and drawing a set of samples in between them. We test the ratio at

25

which samples in a connecting line segment are brighter and less saturated than
the samples plus a small offset along the normal. If this ratio is high enough, we
merge the lines.

Finally, we perform an extra rejection step for lines that do not fit our quality
criteria. The current criteria are:

• A line segment must contain a certain minimum of inlier line spots.

• A line segment must be longer than a minimum length.

• A line segment must be shorter than a maximum length.

Figure 11: An example of lines and inlier line spots found by the line detector.
A merge test is also performed between the outer lines of the goal area and the
penalty area.

5.6 Field boundary detection

Some vision modules should only consider parts of the image containing the soccer
field, since detecting lines or balls outside of the field would waste computational
resources.

To address this, we implemented a neural network-based field segmentation model,
based on the work of [20]. Our approach follows the original method by predicting
the y-position of the field boundary at 40 evenly spaced points across the image
(See magenta points in Figure 12). By fitting a line through these predicted points,
we create a boundary where all pixels below the line are classified as part of the
field.

The architecture described in [20] follows a two-stage design based on [21]. The
backbone consists of 3-4 inception V3 blocks, which handle feature extraction.

26

These features then pass through a single-layer convolutional bottleneck that out-
puts the predicted boundary point positions.

Figure 12: Predicted field boundary points (magenta) and the final boundary fit
(aqua).

Our architecture is very similar, but we switch out the convolutional layers with
depth wise separable convolutions and use the Sigmoid-weighted Linear Unit (SiLU)
[22] as non-linearity instead of the traditional ReLU. The original EfficientNet ar-
chitecture shows that this activation results in better performance [23] as it does
not immediately discard negative inputs which makes training more stable.

We are working on incorporating an EfficientNetV2-inspired backbone [24]. Specif-
ically, we use the "Fused MBConv" block, which combines a depthwise separable
convolution [25] with an SE-Block [26]. This results in a fast parameter efficient
operation.

5.7 Ball detection

In order to quickly find a ball within an image, we split up the detection process
in two steps: a proposal and classification step. In the proposal step, patches
that potentially contain a ball are identified, and in the classification step for each
patch it is determined if it actually contains a ball. Both steps have been subject
to scrutiny and improvement over the course of the past year.

5.7.1 Proposals

In the first step, ball proposals are generated. Because of the limitations that the
NAO hardware poses, the major point of focus when developing the model was
time efficiency. With that in mind, we focused on: (a) designing an efficient system

27

with low runtime, (b) minimizing the number of proposals to reduce the runtime
of the classifier step, all the while not losing out on accuracy.

To reduce runtime, proposals are induced not from the camera image, but from
the generated scan lines, which results in a significantly smaller search space. To
find potential ball locations from scan lines, we make the following assumptions:

(1) The ball is white and black. This assumption is made in order to separate
potential ball candidates from field patches.

(2) The ball has green grass on either the left or right side. This assumption is
made in order to separate ball candidates from field lines.

(3) The ball is round. This assumption is made in order to filter out candidates
that do not have enough vertical extension such as field lines.

(4) Beneath the ball, there is a patch of green grass. This assumption is made
in order to filter out candidates made from patches of other robots in the
image.

We search through the scan lines, and flag each area where the assumptions hold
as a potential ball location.

More specifically, the procedure is as follows:

1. Begin by iterating through all horizontal scan lines and checking if assump-
tion (1) and (2) are held. This check is trivial to perform, as each scan line
has a color attribute that denotes if the line is black/white, green or another
color. If the check is passed, we continue to the next step.

2. Then, identify no more than two points on the scan line of interest that might
be the center of the ball. The next steps of the procedure are separately
conducted for these points.

3. Next, assumption (3) is checked given a potential ball center in image space.
Because the camera matrix and NAO joint positions and orientations are
known, the visual radius of the ball can be estimated using solely the ball
center. With that, we compute what percentage of the circle around the
ball center with the computed radius is white/black by iterating over all
scan lines. If that value exceeds a certain threshold (determined by a hy-
perparameter), there is a circular, ball-colored patch around the potential
ball center. That means assumption (3) is held and the next step in the
procedure should be performed.

4. Subsequently, given a potential ball center and radius, assumption (4) is
validated by checking if the percentage of green color in the patch below the

28

ball exceeds a certain threshold (determined by a hyperparameter). If so,
the ultimate assumption is held, and the proposal is stored.

5. Finally, after all proposals have been gathered, non-maximum suppression
[27] is applied to the proposals to remove overlapping instances.

Upon visually testing the model (e.g., see Figure 13), we notice that the proposals
are generally sensible and expected given our assumptions, while still employing a
time-wise efficient model. Furthermore, we note that the number of proposals is
kept low, also achieving the goal of not overloading the ball classifier.

Figure 13: Ball proposals on an example image. Each proposal has two numerical
values, that respectively denote to what degree (on a scale from 0 to 1) assumption
(3) and (4) are held.

5.7.2 Classification

After ball proposals are determined by the algorithm described in subsubsec-
tion 5.7.1, a ball classification model is used to determine whether the proposals
are actually balls. In the past year, this model was developed and improved.

Dataset

To develop the classifier, first a dataset of patches was gathered based on full-
size images with annotations. To create the dataset, the NAO lower camera ball
detection dataset of B-Human, together with the SPL Object Detection dataset
V2 created by RoboEireann [28] was used as a basis. The patch dataset consists
of 32x32 grayscale patches, which are sampled from full-sized images collected in
different matches. Positive patches are created by taking (part of) a ball annotation
and resizing it to 32x32 using nearest interpolation. Negative patches are extracted
by using both random sampling from the areas without ball annotations, and

29

specifically taking samples from areas with high contrast. This was done because
most false positives occured on patches with a lot of black and white. After
evaluating performance of the developed model, samples from specific areas of the
field, for example the penalty mark, were added, since it was observed that the
model was not able to classify these samples correctly. Examples of the patches
used for training the classifier, before converting them to grayscale and resizing,
are shown in Figure 14.

Figure 14: Examples of the patches used for training the ball classifier. The patches
are converted to grayscale and resized.

Classification model

To classify the ball proposals, a ball classification model was developed. During
development, the goal was to make the model as light as possible, so that we are
able to classify as much proposals as possible in the cycle time available, while
maintaining almost perfect performance. The ball classifier that was developed
uses 939 parameters and has an inference time of around 350µs. The model has
an accuracy, recall, precision and F1-score of above 99%.

The model architecture is shown in Figure 15. It makes heavy use of the Depthwise
Separable Convolution [25] for inference speed. Additionally it uses a Squeeze-
Excite (SE) block [26] between the two spatial reduction layers in order to learn
the dependencies between channels. This allows the model to focus more on the
relevant channels, and achieves a computationally efficient channel attention mech-
anism. This block is important for the model’s ability to generalize, achieving

30

0.3± 0.2% higher F1-score compared to models without the SE

Input
32× 32× 1

Depthwise Seperable Convulation
3× 3 Kernel

Stride 2
Squeeze-Excitation Block

Depthwise Seperable Convulation
3× 3 Kernel

Stride 2

Adaptive
Average Pooling
(1× 1) Output

Linear Layer
32 → 1

Classification

Input Preprocessing
Spatial Reduction

Channel Attention

Further Spatial Reduction Global Context Aggregation Final Classification

Figure 15: TurboBallClassifier Network Architecture

5.8 Robot detection

When playing matches, it is important for robots to be able to detect other robots,
both teammates and opponents. If a robot is able to detect other robots, this
information can be used for multiple things. First of all, it can be used for path
planning and object avoidance. Furthermore, the information could be used to
help localize other robots. Lastly, accurate robot detections can be used to help
filter out irrelevant ball proposals. Since robots have black and white components,
similar to the ball, it can be hard to distinguish ball patches from robot patches.
It was observed that in the ball proposal phase, there were a lot of proposals on
other robots. Because of this, many proposals had to be processed, resulting in a
longer cycle time. Therefore, a robot detection model was developed, with as the
main goal to filter out all proposals that were on a detected robot.

Dataset

To train the robot detection model, first a dataset was collected. The initial dataset
was based on the object detection dataset from RoboEireann [28]. However, the
dataset was quite small, and a substantial percentage of the images was of low
quality. Therefore, we decided to record and annotate our own dataset. This
dataset consists of multiple videos, recorded in the Intelligent Robotics Lab and
at the RoboCup 2024. The videos were manually annotated by members of the
team, using an annotation pipeline based on CVAT5. In total, a dataset consisting
of 26,295 samples was created. Together with a future version of our detection
model, this dataset will be made public.

Detection model

The detection model developed is a single-shot detector (SSD) with a custom back-
bone. This means that first, feature extraction is done using the backbone. After
this, bounding boxes are fitted on the features by the SSD, the boxes are refined,
and subsequently classified. Since the images from the robot are in YUV color
space, and converting them takes up valuable time, the model was specifically de-
signed to be able to work with YUV images.

5https://www.cvat.ai/

31

https://www.cvat.ai/

Figure 16: Examples of robot detections in YUV space

The custom backbone consists of three convolution blocks with a kernel size of
3, all followed by a 2D maxpool operation with a 2x2 kernel. The convolution
blocks consist of one convolution layer, followed by a ReLU activation function.
The first convolution layer maps the number of channels from 3 to 32, the second
has 32 layers as input and output, and the last doubles the number of channels to
64. After this, the SSD runs a network for classification and for regression on the
bounding boxes.

The inference time of the model is 19ms ± 8, which is fast enough to run on
the robot in real-time. The model uses 49,412 parameters. The mAP of the model
on the test set is 31.1%, which was good enough in practice. Examples of robot
detections are shown in Figure 16.

While the developed robot detection model provides a basis for robot detection,
several improvements are still possible. First of all, it was observed that the model
performance differs based on the color of the robot jersey. When the robot jersey
is darker, the model is unable to accurately classify the robot. Furthermore, when
the light is very bright, the YUV image gets noisy, leading to worse predictions.
Lastly, the certainty scores of the detections of the model are quite low, making
it hard to filter which detections to use. At the moment, a project to improve the
robot detection model using state-of-the-art techniques is in progress [29] [30].

6 Motion

6.1 Walking engine

This year we continued work on the walking engine. The original version described
in the 2023 tech report [31], which was based on the 2014 walk described in [32],
has been kept largely the same this year.

However, we are in the process of significantly improving the performance and

32

consistency of the gait generator. A big part of the 2025 vision for the Dutch Nao
Team walking engine is enhancing it with learning based methods which will be
discussed in more detail in subsection 6.2 [33].

This started with a refactor of the existing gait generator in order to provide
Python bindings. During this refactor we also implemented some quality of life
features to make it easier to implement behavior using the walking engine.

6.2 3D reinforcement learning

This year we focused on building out the required infrastructure for motion rein-
forcement learning (RL). While high-level behavioral policies, as described in sub-
section 7.3, can be trained in simplified environments where the robot’s dynamics
are less important, low-level policies such as motion control require a significantly
more complex environment. For such tasks, the accuracy of the robot’s dynamics
in simulation is important. Even small differences in the robot’s dynamics, often
referred to as "the reality gap” ([34], [35] and [36]), can cause a significant drop in
performance when the policy is used on the physical robot.

Figure 17: The NAO model in MuJoCo

To address this, we focused on reducing this gap by using the MuJoCo [37] physics
engine to model the NAO robot (see Figure 17). MuJoCo is a general purpose
physics engine that provides us with all the tools we need to accurately simulate
the NAO robot, such as a gyroscope, accelerometer and pressure sensors.

6.2.1 Gait Modulation

Due to the limited computational resources available, we plan to enhance existing
systems using these learned policies. The first component we want to enhance is
the walking engine, specifically the gait generator. Previous work [38] has shown

33

that enhancing an existing gait generator using a policy learned in simulation leads
to a more generic and stable gait. [33] showed that this technique is generalizable
to different robots, and we are currently working on bringing this to the NAO.

6.3 Keyframe Motion Engine

During competitive matches, it is crucial that our robots are able to execute mo-
tions and make decisions dynamically, to react to a changing environment. How-
ever, certain movements, such as a standup motion after a fall, require the NAO
to execute motions with high precision to ensure safety and success. While the
overall robot behavior can be dynamic and adaptive, these motions need to be
executed with exact control over each joint’s position and timing.

The keyframe motion engine is designed to execute such precise movements consis-
tently and safely. By using keyframes which dictate a specific position and stiffness
for each joint which the robot should reach at defined points in time, the robot is
able to perform complex motions the same way every time.

6.3.1 Composition

Composing a motion involves defining submotions, movements, and conditions that
guide the robot’s actions. A motion is essentially a sequence of keyframes, each
representing the desired joint positions at a given time. However, to introduce the
reusability of specific movements and to introduce more complex behaviors during
motions, these motions have been structured hierarchically.

Motion: A motion is the primary structure that encapsulates all the actions to
be performed, for which an example can be seen in Figure 18. It gives an abstract
representation of what the robot will do during it’s execution and includes the
overall settings for the motion. The settings alter the motion execution by:

• Changing the interpolation type: Linear, Ease-In, Ease-Out, Ease-In-Out,
or a custom bezier curve.

• Changing the exit routine the robot will execute after a successful execution.

34

standup_back.toml
global_interpolation_type = "Linear"
exit_routine = "Standing"
motion_order = [

"standup/on_back/ready_to_kick",
"standup/on_back/kick_up",
"standup/on_back/halfsit_to_halfcrouch",
"standup/halfcrouch_to_sit",
"standup/extend_legs",

]

Figure 18: An example of a motion file, used in the keyframe motion engine.

Submotions: Within each motion, there are one or more submotions. A sub-
motion represents a smaller, modular part of the motion. It represents a specific
part of the larger motion which can be reused by other motions. Submotions are
defined with an order of movements to be executed and more motion settings spe-
cific to this submotion, as can be seen in the example in Figure 19. These settings
include:

• Joint stiffness

• Torso angle bounds which dictate what angles the robots torso should remain
between to be considered stable.

• Exit wait time to limit how long the robot will wait after a submotion to see
if it is stable.

• Fail routine which will be executed if the current submotion fails (for exam-
ple, when the robot exceeds it’s torso limits).

• Entry conditions that the robot will have to fulfill to be able to enter the
submotion. Otherwise, it will execute the fail routine of the last submotion.

Movements: At the core of each submotion are the Movements. A movement
specifies the exact target joint positions, along with the duration it should take
to reach those positions. Movements are the smallest components in the motion
structure and are executed in sequence. The movements also contain an optional
setting, which is able to override the interpolation type set by it’s parent motion.

6.3.2 Execution

The following flowchart shown in Figure 20 illustrates the steps involved in execut-
ing a robot’s motion. It covers the initialization, safety checks, motion execution,
and transitions between submotions, ensuring smooth and safe operation through-
out the process. Absent from this flowchart are additional safety measures such
as checking the chest angle bounds every cycle, which may trigger a failroutine.

35

{
"joint_stifness": 0.9,
"torso_angle_bounds": [

{
"variable": "AngleY",
"min": -0.6,
"max": 0.6

}
],
"fail_routine":"Abort",
"exit_wait_time": 1.5,
"block_pickup": true,
"entry_conditions": [

{
"variable": "AngleY",
"min": -0.6,
"max": 0.6

}
],
"keyframes": [

{
"duration": 0.5,
"target_position": {

"head_yaw": 0.0,
"head_pitch": 0.3839724354387525,
"left_shoulder_pitch": 2.0943951023931953,
"left_shoulder_roll": -0.08726646259971647,
"left_elbow_yaw": -1.48352986419518,
"left_elbow_roll": -0.33161255787892263,
// more joint values...

}
}

]
}

Figure 19: An example of a submotion file with a single keyframe, used in the
keyframe motion engine.

7 Behavior

Once all sensor inputs have been processed into meaningful information, the be-
havior system’s role is to translate this information into actions that the robot
can execute. Our current implementation employs a traditional, deterministic
approach, where actions are assigned based on the robot’s state and the game
context. However, we are exploring more advanced methods, like reinforcement
learning (RL), which could have more potential in the future to provide more
dynamic and adaptable behaviors.

36

Figure 20: The flowchart for the execution of a motion, simplified.

37

7.1 Behavior Engine

The current implementation of the behavior engine prioritizes executing tasks de-
termined by the PrimaryState, which, in play, is determined by the GameCon-
troller’s GameState. This ensures that the behavior always obeys the GameCon-
troller. In the Playing state, the behavior engine employs a dynamic Role system.
Each robot has a default role determined by its number and starting position on
the field. As the game progresses, the robot’s role can be changed, though, in its
current implementation it is limited to becoming a Striker upon detecting a ball.

7.2 Behavior Simulation

With a framework as new as ours, developing behaviors with in-progress dependen-
cies becomes a difficult task, which became especially apparent during the German
Open 2024. To be able to develop behaviors in parallel with other systems, we cre-
ated a behavior simulation that abstracted all detections. Using this method, we
were able to develop more advanced behaviors during the RoboCup 2024, whilst
new features were being implemented alongside it.

The simulation provides a simple top-down 2D overview of the field with an in-
terface similar to the GameController. The simulation is done in Bevy, and the
interface is implemented using egui6. The simulation allows for simulating a nor-
mal game’s most common situations, like starting procedures and general play,
whilst viewing information related to the behaviors and roles.

The recent move of yggdrasil to the Bevy framework will allow us to create a more
directly integrated simulation. Our current plan is to expand the 2D simulation so
that it allows for further development of behaviors with a high level of abstraction
and so that it can be used in our RL pipeline. Tight integration with the framework
will also make it possible to move parts of the simulation to 3D, in order to simulate
more complex behaviors such as kicks with higher accuracy.

7.3 Reinforcement learning behavior

As part of our behavior engine, over the last year, work has been done on develop-
ing a framework that incorporates learned behaviors using reinforcement learning
(RL). A framework based on stablebaselines37 was developed, together with a
structure to create specific environments to train agents for specific behaviors. To
train RL behaviors, a simulation based on the AbstractSim developed by WisTex
United was used [39]. Several components, including an improved overview of the

6https://github.com/emilk/egui
7https://stable-baselines3.readthedocs.io/en/master/index.html

38

https://github.com/emilk/egui
https://stable-baselines3.readthedocs.io/en/master/index.html

field and a visualizer of the robot vision, were added. An overview of the current
simulator is shown in Figure 21.

Figure 21: The current simulation used for behavior reinforcement learning.

All behaviors output a walking engine input, which is a value for the forward, left
and turn of the requested step. This makes the integration of RL behaviors in the
framework straightforward, since we can replace the initial step prediction by the
trained RL policy. For this year, the focus was to develop single-agent behaviors.
Several single-agent behaviors have been successfully developed and deployed on
the robot, including a partially-observable walk-to-ball behavior, which lets the
robot to search for the ball and once it is found, walk towards it. After developing
single-agent behaviors, the developed framework was rewritten to be able to use
the skrl8 library, which supports multi-agent training and further customization
of policy models. This allows for training higher-level behaviors using hierarchical
RL or multi-agent learning.

8 Machine Learning Integration

Over the past years, machine learning (ML) has become increasingly important
in the SPL league. This year, we have developed various ML models that we
currently use in our framework. This chapter explains how we efficiently port
these models to the framework, and how we develop the models in a unified style
using DNT-ML.

8.1 ML in framework

After a machine learning (ML) model has been trained, the subsequent step is to
port it to the framework so that it can run on the NAO robots. However, as most

8https://skrl.readthedocs.io/en/latest/

39

https://skrl.readthedocs.io/en/latest/

ML models are trained in Python, integrating a model into the Rust framework is
not trivial. In order to make ML integration less time-consuming, we developed
user-friendly functionalities that make it straightforward to load and execute ML
models within the framework. As a result, new models can easily be shipped and
tested.

8.1.1 Backend

Firstly, we need a backend that provides the core utilities necessary for deploy-
ing ML models around which we can build a user-friendly interface. The hard
requirements for the backend are that it must be able to

• Load a model from stored weights once, and be able to be infer multiple
times without reloading.

• Load input values and fetch output values after execution has finished with
minimal latency.

• Support a wide range of easy to use operations, as we want to experiment
on models with many different layer types.

As such, we compared three popular Rust solutions that fulfill these requirements:
Tract9, PyTorch bindings10, and OpenVINO bindings11. We judged the perfor-
mance of these solutions based on the inference times of some canonical computer
vision ML models, where a lower value is more favorable. Benchmarks were con-
ducted with Criterion12.

Backend/Model ResNet-18 MobileNetv2
OpenVINO 158ms 33ms
tch-rs (PyTorch bindings) 250ms 143ms
tract 9050ms 1805ms

Table 2: Backend performance comparison.

In Table 2, the average results for a single forward pass are shown for ResNet-18
[40] and MobileNetv2 [41]. As OpenVINO outperformed the other backends on
both benchmarks by a large margin, we continued to use it as the backend for ML
integration.

9https://github.com/sonos/tract
10https://github.com/LaurentMazare/tch-rs
11https://github.com/intel/openvino-rs
12https://github.com/bheisler/criterion.rs

40

https://github.com/sonos/tract
https://github.com/LaurentMazare/tch-rs
https://github.com/intel/openvino-rs
https://github.com/bheisler/criterion.rs

8.1.2 Interface

Using OpenVINO, we designed an interface where a user only has to provide the
file where the model (hyper)parameters are stored and input and output data types
(to enable Rust’s strong type inference) to create a so-called ML task. These tasks
automatically handle checking of input and output sizes and count, their types
and output strategy. Users can choose to infer on a separate thread and output to
a Bevy resource or entities, or run the model in scope and block until completion.

/// The robot detection model, based on a VGG-like backbone
/// using SSD detection heads.
pub struct RobotDetectionModel;

impl MlModel for RobotDetectionModel {
// we define the input as an array of bytes
type Inputs = Vec<u8>;
// we define an output as a multidimensional array of boxes
// and an array of scores
type Outputs = (MlArray<f32>, Vec<f32>);
// we need to specify the path to our weights and
// model definition
const ONNX_PATH: &str = "models/robot_detection.onnx";

}

fn detect_robots(
mut commands: Commands,
mut model: ResMut<ModelExecutor<RobotDetectionModel>>,
// other data we need ..

) {
// resize image ..

commands
.infer_model(&mut model)
.with_input(&resized_image)
.create_resource()
.spawn({

// moving data to this thread ..

// type checked post-processing step
// (matches definition in MlModel::Outputs)
move |(box_regression, scores)| {

// setup some detection data ..

// automatically gets pushed to a bevy resource
Some(RobotDetectionData {

detected: detected_robots,
image: image.clone(),
result_cycle: cycle,

})
}

});
}

Figure 22: A snippet from yggdrasil, doing inference on the robot detection model.

By using ML tasks, the ML integration workflow has been significantly simplified

41

and we can now very easily iterate on models in the framework. An example of
ML tasks is shown in Figure 22.

8.2 DNT-ML

A crucial part of creating and integrating machine learning models in the frame-
work is training models with varying (hyper)parameters, optimization methods
and data augmentations. While straightforward, setting up the full pipeline for
each of these models requires time. This time includes setting up the main training
loop, choosing data transformations, setting up evaluation metrics, and creating
the means to export the results and models obtained from the pipeline.
To streamline this process, we introduce the DNT-ML framework. Through this
framework, we abstract away the training pipeline and simplify the pre-, mid-
and post-training components that are typically part of a full machine learning
(ML) model training pipeline. This is done in a modular fashion, such that any
components can effortlessly be added or removed to the pipeline as desired. As
such, users need only to define a ML model compatible with the PyTorch library,
choose the modules required for their model pipeline, and optionally define custom
modules if the existing module set does not fit the pipeline requirements.

8.2.1 Training pipeline

At the very minimum, the training pipeline requires the user to define a PyTorch
model, a loss function for their model, an optimization algorithm, a dataloader
(custom or otherwise), and the number of epochs required to run the pipeline.
With these, the training pipeline is as follows:

1. Initialize pipeline with the given arguments and parameters.

2. At each epoch, iterate through the batches of training data.

3. Perform the basic training operations, including backpropagation and opti-
mization step.

4. Perform a forward and loss calculation for the validation step on the valida-
tion data.

This essentially forms the skeleton and only provides the basic operations that
any ML model would require to be trained. This simplicity, however, allows us to
hook into any point of the timeline, and perform operations with the data obtained
throughout the pipeline. For example, the basic pipeline has no evaluation met-
rics incorporated. However, we can hook into the point after which the train and

42

validation step were executed, and the data required to compute the metric will
be passed on. Likewise, we can also hook in a point after each batch from a dat-
aloader, or right before a train or validation step was performed. This allows for a
highly modular training pipeline that can be adapted for any PyTorch model. Fur-
thermore, through the use of dataloaders, we can perform any operations needed
to transform or adjust the data in the loader as desired. These modifications can
even be chained and thus, also allows for a modular data pre-processing pipeline.

8.2.2 Modules

The modules within the framework are divided into two sections. The first is a
pipeline with component callables, while the second is made up of callback func-
tions. During a train or validation step, the batch retrieved from a dataloader is
passed through the timeline to apply transformations to the data. These transfor-
mations are applied sequentially and can be done in any form.
The framework is bundled with several basic callables, which can adjust the data
structure of the data batch and filter out data based on any user conditions. At
the moment, common torchvision transforms are also added to the list of built-
in callables. Regardless, users can create new callables that can be used in the
pipeline through the nn.Module module from PyTorch by defining a class as a
child of this module, and defining a forward function that takes an input and any
additional arguments, and returns an output.

The callback functions use predefined hooks in the training pipeline to execute
code. Typically, callbacks receive the model, training parameters, configuration
dictionaries. Depending on where in the pipeline the callback hooks into, they also
receive model outputs, batch data and calculated loss. Like the pre-processing
pipeline, the framework houses several pre-defined callbacks and allows users to
create their own.

9 Workshops and events

During 2024 DNT has organized and attended multiple events with the workshops
and events committee. Throughout the year we have helped on several different
occasions where we arrange robot soccer match demonstrations, presentations and
python workshops. These are mostly focused on educational purposes and creating
an interest in our field of autonomous robotics. However, there are also demon-
strations and talks with the purpose of gathering sponsors and creating publicity
for DNT.

The DNT presentations include general information about DNT, some information

43

about the Nao robots we work with, and the Robocup and SPL rules and what
we need to do in order to make the robots play soccer on their own. Depending
on the group, their initial knowledge, and age we make the presentation longer or
shorter, for example by adding more technical details about what we work on.
For our match demonstrations, we will have two teams of robots, either 2 vs 2 or
1 vs 1, depending on the number of robots we have available. We then play a 10
minute match where visitors can see the capabilities of our robots and learn how
a SPL match looks and works.
We have also given two Python workshops, which involved creating simple assign-
ments to teach the beginnings of Python to senior highschool students. The topics
that are included in these workshops are variables, operators, if statements and
loops. We aim to create fun and easy exercises that help these students understand
the concept of programming, and enable them to make small python programs of
their own.

9.1 List of activities

As a team, we give demonstrations, presentations, and workshops about what
we do. The following subsections provide a list and descriptions of all the events,
demonstrations, and workshops DNT attended and organised last year. In addition
to these big events, we also give presentations and demonstrations to small groups
of people, who, for example, get a tour around Lab42.

9.1.1 Sponsor Event RoboCup

This was an event we attended with the intention of showing our work to different
companies to make them excited for RoboCup and find new RoboCup sponsors.
Around 150 people from different companies attended. Different aspects of the
RoboCup will be shown. The exposition is a trade fair setup in which different
teams present/demonstrate themselves. The focus was mostly on telling them what
we do at the RoboCup. We also brought two robots for small demonstrations.

9.1.2 Visit of Metis College - February

Forty highschool students of the Metis college who have been following a computer
science course in school, will visit our lab. We have given them a succinct presen-
tation that includes an introduction to the team and some background information
on the assignments they will be making. We also gave a brief demo of 1 robot fol-
lowing the ball and scoring on the field. Showing its different abilities such as ball
and field detection, the walking engine, being able to stand up after falling, and
all the other functions we implemented. After this, we have a workshop planned

44

for them where they will do short programming assignments to learn the basics of
python programming.

9.1.3 School Visit - March

Sixteen eighteen year old students paid a visit to Amsterdam Science park, of
which the Robolab was a part as well. They were studying in their final year of
computer science specialization (IIS Avogadro, Turin). We held a brief general
presentation of DNT and a 2v2 soccer match demonstration.

9.1.4 Career Day - March

The Career day is an event for highschoolers who are choosing a study. It is
organized by JetNet. The day is divided into rounds, within each round a group of
students comes to our stand. We have 5 minutes for explanation and 20 minutes
for interactive activities. The focus lies on what kind of studies the team members
do and what kind of career they can expect if they follow our path.

9.1.5 Girls Day - April

Forty two girls from highschool VWO 1 come in groups of three after lunch to join
a carousel of activities at science park, our robolab is one of these activities. The
girls day is meant for girls that are interested in scientific subjects. They will be
divided into three different groups. Each group will get a demo and a presentation
of 25 minutes in total.

9.1.6 School Visit Belgium - May

On this day, a school from Belgium visited the lab. The group consisted of 30
students of approximately 17 years old. Their visit begun with a presentation and
demo, after this they worked on the python programming workshop we provide.

9.1.7 24 uur Oost - September

The Dutch Nao Team participated in 24 uur Oost, an event organized by Ams-
terdam where there were several activities all in the eastern part of Amsterdam.
For this event, we gave demonstrations and presentations about what we do as a
team.

9.1.8 Weekend of Science - October

The “weekend van de wetenschap” or weekend of science is a day when Amsterdam
Science park is open for everyone to visit and learn about the research that is done

45

there and the topics that the students at science park are learning about. There are
multiple small activities, mainly focused at younger kids to let them learn about
scientific topics in a fun way. On this day DNT showed them a demonstration by
doing a 2v2 soccer match. Every hour there was a scheduled match that people
could join to watch. Between the scheduled matches we stood outside the lab with
one robot in NAOqi, for children to interact with.

9.1.9 UvA Open Campus Day - November

The open campus day is an event where senior highschoolers who want to choose
a study at a university can come to the UvA to look around, talk to students and
visit presentations about different study directions. DNT gave a scheduled robot
soccer demonstration every 45 minutes, and in the meanwhile answered questions
about DNT our study and the UvA.

9.1.10 Visit of French Students - November

On this day highschoolers from France got a tour and some workshops from FNWI
at science park to learn more about what happens at universities. We were an
activity for the group as well. The focus was on showing them what we work on
in the team. We gave them a presentation about DNT and a demonstration in the
form of a 2v2 match. Afterwards we did a small quiz.

9.1.11 Startup Village Visits - throughout the year

DNT has a partnership deal with Startup Village (SUV) at science park. This
deal entails that they sponsor us with a certain amount of money and they can
schedule visits to our lab. When they have a group or company visiting them, they
can come to the Intelligent Robotics Lab and we will give them a talk about DNT
and what we do, and show them a demo with our robots. These are mostly short
10-15 minute visits with a small group of ±20 people. They happen more often
throughout the year. Examples of groups we hosted are a Swedish delegation, a
delegation from Krakow, master students from the NTNU Trondheim and groups
from small companies.

9.2 SPL events

Throughout the year, several events for and by the Standard Platform League of
the RoboCup are organized. In 2024, the Dutch Nao Team participated in three
events: the German Open, the Robocup, and the RoHOW.

46

9.2.1 German Open

The German Open is an event from the RoboCup where a subset of SPL teams
(and other leagues) gather to play matches against each other and spend their
week programming and improving their performance in Germany. This year the
German Open took place in Kassel. The German Open took place in April. For
our team, the main goal of the GO was to be able play with yggdrasil for the first
time. We ended last, but were able to play with our framework and made a lot of
progress during the week.

9.2.2 RoboCup

The RoboCup is the main robotics competition where teams from all over the
world come together to play competions. In July 2024, the RoboCup was hosted
in the Netherlands in Eindhoven. The teams have spend one week where they
got to work on their software and test them in the environmental conditions at
the RoboCup. The first 2 days are primarily for improving and testing before the
matches begin. After this the matches will be held until the final competition on
the last day. During this week DNT has worked on several improvements, under
which improving the ball and robot detection models and refining behaviors, as
well as collecting data for future datasets. We placed fifth out of the six teams
that participated in the Challenge Shield of the SPL league.

9.2.3 RoHOW

RoHOW, the Robotics Hamburg Open Workshop Event, is organized by SPL team
HULKs and is held at the Technical University of Hamburg in November. There
are seminars and workshops about Robotics within our league held by other teams,
but there is also the possibility to request a certain seminar and/or give your own.
As usual, the Dutch Nao Team participated. We also won the yearly SPL Quiz
and have won ourselves the honor to prepare the one for next year’s event.

10 Plans for 2025

In 2024, the foundation of yggdrasil has been continued and developed into a
framework that allows us to play matches. For 2025, this means that the focus can
shift from developing elements necessary to play matches to developing elements
that enable us play better matches. In the first part of 2025, the focus will be
working towards the German Open 2025 and RoboCup Brazil. In the second part
of 2025, the performance of DNT on the RoboCup Brazil will be analyzed to
determine a roadmap towards RoboCup 2026.

47

10.1 Software

For the software development roadmap in 2025, our primary focus will be on
strengthening the core framework while simultaneously preparing for the integra-
tion of more RL-based behavior policies. Finally, we are planning to make our
code open-source at the RoboCup German Open 2025.

A large part of our efforts will be spent on expanding the framework to build a
strong foundation for the wide RL integration. Example tasks include expanding
nidhogg so that simulators are as frictionless to use as real NAOs, or more code
sharing between the framework and 2D behavior simulation. Another part of this
effort is better visualization and evaluation of our gameplay. To support this
initiative, we will be building out more advanced tooling with Rerun.

In the shorter term, we are planning to finalize the visual localization system.
This will significantly improve our pose estimation, which is a hard requirement
for success. The walking engine will be improved as well, with a complete rewrite
in the works that includes in-walk kick motions. The goal is to improve stability
and speed, while also making the code easier to use in simulation environments.
These two tasks should allow us to score our first official goals against opponents
using the yggdrasil framework at the German Open.

10.2 AI

For the projects around artificial intelligence, the main focus for 2025 will lie
on reinforcement learning. In 2024, a large part of the needed object detection
models was developed, which allows for more research projects and state-of-the-art
development in 2025. For the Dutch Nao Team, a large part of the focus will go
towards integrating reinforcement learning in most layers of the framework. We
are planning to use reinforcement learning to replace a large part of the behavior
engine, which allows to integrate tactics and teamplay, things that are now lacking
in the behaviors. To do this, we want to use hierarchical RL to both make higher
level decision policies and lower level policies that execute behaviors.

Furthermore, we will focus on doing motion with 3D reinforcement learning. This
year, we developed an accurate 3D simulation of the NAO that can be used for
training models. In 2025, we want to use this to replace and extend multiple
motion-specific aspects of the framework. Specifically, we want to continue our
research in enhancing the walking engine with RL. Furthermore, we want to start
researching the possibilities for usage of RL in getup motions, damage prevention
and balancing.

48

Lastly, we plan to continue improving the current object detection models. For
this, we want to explore several possibilities, including the use of a shared feature
backbone and moving to new state-of-the-art object detectors, such as YOLO11.
Upcoming challenges such as the visual referee pose estimation requirements for
upcoming matches will benefit greatly from these improvements.

10.3 Management, board and committees

For the management, the goal of 2025 will be to continue the way the team is or-
ganized as smoothly as possible. Since the members of the management will most
likely leave the team halfway through 2025, the focus of the current management
will be to enable a smooth transition to a new management, while also organizing
the team in working towards RoboCup Brasil.

The board will continue to take care of the financial and legal aspects of the foun-
dation and team.

10.4 Committees

In terms of committees, we plan to continue with the nice performance of the
Workshops and events committee, that is currently one of the highlights of the
team as it provides us with incomes and a nice exposure to the exterior.

If last year we put lots of efforts in the social media committee, successfully en-
hancing both the feed and overall presentation of our social media platforms, our
primary focus for the coming year is to further develop the Partnerships Com-
mittee. While this committee had not been a major focus until recent months,
where we started it to really push it forwards. We have high expectations for this
committee and their new members.

11 Contributions

The following list summarizes the contributions of everyone that worked on the
tech report, in alphabetical order:

• Fiona Nagelhout acted as lead of the workshop and events team. She
was responsible for organizing all workshops, talks and presentations of the
Dutch Nao Team. Furthermore, she helped organizing the participation of
the DNT in the SPL events.

49

• Fyor Klein Gunnewiek developed the current behavior engine and behav-
ior simulation.

• Gijs de Jong acted as software tech lead. Furthermore, he worked on the
bevy framework, the walking engine and several AI vision projects.

• Harold Ruiter acted as team lead in the new management. Furthermore,
he worked on tyr/the bevy framework, the ball proposals and localization.

• John Yao worked on NAO head interpolation. Furthermore, he has been
actively involved in the outreach committee.

• Joost Weerheim acted as secretary of the board and built upon the work
of Macha and Gijs for robot detection.

• Juell Sprott developed the DNT-ML framework.

• Julia Blaauboer developed the robot-to-robot communication framework,
refactored the kinematics interface, and worked on obstacle avoidance and
pathfinding.

• Macha Meijer acted as AI tech lead. Furthermore, she developed the
behavior reinforcement learning framework and worked closely with Gijs on
various detection models, including robot detection and ball classification.

• Marina Orozco González acted as operations lead in the new manage-
ment. Furthermore, she contributed in the AI team on multiple projects,
including color calibration, ball detection and field boundary detection.

• Mark Honkoop worked on the initial versions of the scan lines and line
detection. Furthermore, he is our most treasured pull request reviewer.

• Morris de Haan developed the whistle detection model and improved the
ball proposals, making them more efficient.

• Rick van der Veen developed the rerun control integration, greatly im-
proving developer experience.

• Stephan Visser acted as treasurer of the board and developed the keyframe
motion engine along with current motion composition.

12 Conclusion

In this report, the work of the Dutch Nao Team in 2024 was discussed. Details
of all projects that were done over the past year on framework, sensing, vision,
motion, behavior and machine learning integration were discussed, together with

50

possible future improvements. Furthermore, an overview of all past events was
given. On the organizational side, an overview of the newly developed team and
management structure was given, together with a clear definition of all tasks in
the management and board. Lastly, plans for 2025 for software, AI, organization,
and committees were discussed. Based on the developments this year, the goal is
to be able to play good matches and score goals at the RoboCup Brasil.

References

[1] A. Visser, R. Iepsma, M. van Bellen, R. K. Gupta, and B. Khalesi, Dutch
nao team – team description paper – standard platform league – german open
2010, Jan. 30, 2010.

[2] S. Oomes, P. Jonker, M. Poel, A. Visser, and M. Wiering, “The dutch aibo
team 2004,” Jul. 1, 2004.

[3] J. Kaiser, R. Geurts, H. Ruiter, G. de Jong, and M. O. Gonzalez, “Team
description paper dutch nao team 2024,” Tech. Rep., Feb. 13, 2024.

[4] W. Duivenvoorden, G. de Jong, H. Ruiter, et al., “Team qualification docu-
ment for robocup 2023,” Tech. Rep., Feb. 13, 2023.

[5] W. Duivenvoorden, H. L. gezegd Deprez, T. Wiggers, et al., “Team qualifi-
cation document for robocup 2022 bangkok, thailand,” Tech. Rep., Feb. 14,
2022.

[6] HULKs, Hulk, https://github.com/HULKs/hulk, Accessed: 2024-12-26,
2024.

[7] B. Contributors, Bevy engine, https://github.com/bevyengine/bevy/
releases/tag/v0.10.0, version 0.15.0, Nov. 30, 2023.

[8] Rerun Development Team, Rerun: A visualization sdk for multimodal data,
version 0.21.0, Available from https://www.rerun.io/ and https://
github.com/rerun-io/rerun, Online, 2024.

[9] J. Richter-Klug, “Visuelle odometrie in der robocup standard platform league,”
M.S. thesis, University of Bremen, 2018.

[10] D. Laidig and T. Seel, “Vqf: Highly accurate imu orientation estimation with
bias estimation and magnetic disturbance rejection,” Information Fusion,
vol. 91, pp. 187–204, Mar. 2023, issn: 1566-2535. doi: 10.1016/j.inffus.
2022.10.014. [Online]. Available: http://dx.doi.org/10.1016/j.
inffus.2022.10.014.

51

https://github.com/HULKs/hulk
https://github.com/bevyengine/bevy/releases/tag/v0.10.0
https://github.com/bevyengine/bevy/releases/tag/v0.10.0
https://www.rerun.io/
https://github.com/rerun-io/rerun
https://github.com/rerun-io/rerun
https://doi.org/10.1016/j.inffus.2022.10.014
https://doi.org/10.1016/j.inffus.2022.10.014
http://dx.doi.org/10.1016/j.inffus.2022.10.014
http://dx.doi.org/10.1016/j.inffus.2022.10.014

[11] S. Madgwick et al., “An efficient orientation filter for inertial and iner-
tial/magnetic sensor arrays,” Report x-io and University of Bristol (UK),
vol. 25, pp. 113–118, 2010.

[12] R. G. Valenti, I. Dryanovski, and J. Xiao, “Keeping a good attitude: A
quaternion-based orientation filter for imus and margs,” Sensors, vol. 15,
no. 8, pp. 19 302–19 330, 2015.

[13] N. Backer and A. Visser, “Learning to recognize horn and whistle sounds for
humanoid robots,” Nov. 7, 2014.

[14] R. N. Bracewell, “The fourier transform,” Scientific American, vol. 260, no. 6,
pp. 86–95, 1989.

[15] M. Ashouri, F. F. Silva, and C. L. Bak, “Application of short-time fourier
transform for harmonic-based protection of meshed vsc-mtdc grids,” The
Journal of Engineering, vol. 2019, no. 16, pp. 1439–1443, 2019.

[16] N. W. Backer, B. O. K. Intelligentie, and A. Visser, “Horn and whistle recog-
nition techniques for nao robots,” Bachelor thesis, Universiteit van Amster-
dam, 2014.

[17] H. Aagela, V. Holmes, M. Dhimish, and D. Wilson, “Impact of video stream-
ing quality on bandwidth in humanoid robot nao connected to the cloud,”
in Proceedings of the Second International Conference on Internet of things,
Data and Cloud Computing, 2017, pp. 1–8.

[18] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transac-
tions on pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330–
1334, 2000.

[19] T. Röfer, T. Laue, A. Baude, et al., B-Human team report and code re-
lease 2019, Only available online: http://www.b-human.de/downloads/
publications/2019/CodeRelease2019.pdf, 2019.

[20] A. Hasselbring and A. Baude, “Soccer field boundary detection using con-
volutional neural networks,” in Robot World Cup, Springer, 2021, pp. 202–
213.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

[22] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning,” Neural networks,
vol. 107, pp. 3–11, 2018.

52

http://www.b-human.de/downloads/publications/2019/CodeRelease2019.pdf
http://www.b-human.de/downloads/publications/2019/CodeRelease2019.pdf

[23] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning, PMLR,
2019, pp. 6105–6114.

[24] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,”
in International conference on machine learning, PMLR, 2021, pp. 10 096–
10 106.

[25] L. Sifre and S. Mallat, “Rigid-motion scattering for texture classification,”
arXiv preprint arXiv:1403.1687, 2014.

[26] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7132–7141.

[27] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.

[28] Z. Yao, W. Douglas, S. O’Keeffe, and R. Villing, “Faster yolo-lite: Faster
object detection on robot and edge devices,” in Robot World Cup, Springer,
2021, pp. 226–237.

[29] Y. Peng, H. Li, P. Wu, Y. Zhang, X. Sun, and F. Wu, D-fine: Redefine
regression task in detrs as fine-grained distribution refinement, 2024. arXiv:
2410.13842 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2410.
13842.

[30] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More
features from cheap operations,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 1580–1589.

[31] G. de Jong, H. Ruiter, D. W. Prinzhorn, et al., “Dutch nao team - technical
report,” Tech. Rep., Dec. 31, 2023.

[32] B. Hengst, “Runswift walk2014 report robocup standard platform league,”
School of Computer Science and Eng., Univ. of New South Wales, 2014.

[33] G. de Jong, L. Eshuijs, and A. Visser, “Learning to walk with a soft actor-
critic approach,” in Proceedings of the 35th Benelux Conference on Artificial
Intelligence (BNAIC 2023), 2023.

[34] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in Advances in Artificial Life:
Third European Conference on Artificial Life Granada, Spain, June 4–6,
1995 Proceedings 3, Springer, 1995, pp. 704–720.

[35] K. Bousmalis, A. Irpan, P. Wohlhart, et al., “Using simulation and domain
adaptation to improve efficiency of deep robotic grasping,” in 2018 IEEE
international conference on robotics and automation (ICRA), IEEE, 2018,
pp. 4243–4250.

53

https://arxiv.org/abs/2410.13842
https://arxiv.org/abs/2410.13842
https://arxiv.org/abs/2410.13842

[36] F. K. Gunnewiek, Quantifying the reality gap in abstracted pedestrian detec-
tion in simulated environments, Bachelor’s thesis, Jun. 2023. [Online]. Avail-
able: https://staff.fnwi.uva.nl/a.visser/education/bachelorINF/
Bachelor_Thesis_Fyor_Klein_Gunnewiek.pdf.

[37] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, 2012, pp. 5026–5033. doi: 10.1109/IROS.2012.
6386109.

[38] M. Rahme, I. Abraham, M. L. Elwin, and T. D. Murphey, “Dynamics and
domain randomized gait modulation with bezier curves for sim-to-real legged
locomotion,” arXiv preprint arXiv:2010.12070, 2020.

[39] W. United, Abstractsim. [Online]. Available: https: // wistex- united .
github.io/docs/Code/AbstractSim/AbstractSim.html.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[41] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp. 4510–
4520.

54

https://staff.fnwi.uva.nl/a.visser/education/bachelorINF/Bachelor_Thesis_Fyor_Klein_Gunnewiek.pdf
https://staff.fnwi.uva.nl/a.visser/education/bachelorINF/Bachelor_Thesis_Fyor_Klein_Gunnewiek.pdf
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://wistex-united.github.io/docs/Code/AbstractSim/AbstractSim.html
https://wistex-united.github.io/docs/Code/AbstractSim/AbstractSim.html

	Introduction
	Team Structure
	Board
	Management
	Roadmap

	Tech teams
	Committees

	Framework
	Moving over to Bevy
	Hardware abstraction
	Deployment
	Visualization
	Networking
	Deadlines
	Encoding

	Kinematics

	Sensing
	Orientation filter
	Whistle detection

	Vision
	Projection
	Camera calibration
	Intrinsics
	Extrinsics

	Color calibration
	Scan lines
	Scan grid
	Scan line regions
	Color classification

	Line detection
	Field boundary detection
	Ball detection
	Proposals
	Classification

	Robot detection

	Motion
	Walking engine
	3D reinforcement learning
	Gait Modulation

	Keyframe Motion Engine
	Composition
	Execution

	Behavior
	Behavior Engine
	Behavior Simulation
	Reinforcement learning behavior

	Machine Learning Integration
	ML in framework
	Backend
	Interface

	DNT-ML
	Training pipeline
	Modules

	Workshops and events
	List of activities
	Sponsor Event RoboCup
	Visit of Metis College - February
	School Visit - March
	Career Day - March
	Girls Day - April
	School Visit Belgium - May
	24 uur Oost - September
	Weekend of Science - October
	UvA Open Campus Day - November
	Visit of French Students - November
	Startup Village Visits - throughout the year

	SPL events
	German Open
	RoboCup
	RoHOW

	Plans for 2025
	Software
	AI
	Management, board and committees
	Committees

	Contributions
	Conclusion

